MicroRNA-218 regulates vascular patterning by modulation of Slit-Robo signaling.
نویسندگان
چکیده
RATIONALE Establishment of a functional vasculature requires the interconnection and remodeling of nascent blood vessels. Precise regulation of factors that influence endothelial cell migration and function is essential for these stereotypical vascular patterning events. The secreted Slit ligands and their Robo receptors constitute a critical signaling pathway controlling the directed migration of both neurons and vascular endothelial cells during embryonic development, but the mechanisms of their regulation are incompletely understood. OBJECTIVE To identify microRNAs regulating aspects of the Slit-Robo pathway and vascular patterning. METHODS AND RESULTS Here, we provide evidence that microRNA (miR)-218, which is encoded by an intron of the Slit genes, inhibits the expression of Robo1 and Robo2 and multiple components of the heparan sulfate biosynthetic pathway. Using in vitro and in vivo approaches, we demonstrate that miR-218 directly represses the expression of Robo1, Robo2, and glucuronyl C5-epimerase (GLCE), and that an intact miR-218-Slit-Robo regulatory network is essential for normal vascularization of the retina. Knockdown of miR-218 results in aberrant regulation of this signaling axis, abnormal endothelial cell migration, and reduced complexity of the retinal vasculature. CONCLUSIONS Our findings link Slit gene expression to the posttranscriptional regulation of Robo receptors and heparan sulfate biosynthetic enzymes, allowing for precise control over vascular guidance cues influencing the organization of blood vessels during development.
منابع مشابه
A Slit/miR-218/Robo regulatory loop is required during heart tube formation in zebrafish.
Members of the Slit family of secreted ligands interact with Roundabout (Robo) receptors to provide guidance cues for many cell types. For example, Slit/Robo signaling elicits repulsion of axons during neural development, whereas in endothelial cells this pathway inhibits or promotes angiogenesis depending on the cellular context. Here, we show that miR-218 is intronically encoded in slit2 and ...
متن کاملRegulation of Drosophila Brain Wiring by Neuropil Interactions via a Slit-Robo-RPTP Signaling Complex
The axonal wiring molecule Slit and its Round-About (Robo) receptors are conserved regulators of nerve cord patterning. Robo receptors also contribute to wiring brain circuits. Whether molecular mechanisms regulating these signals are modified to fit more complex brain wiring processes is unclear. We investigated the role of Slit and Robo receptors in wiring Drosophila higher-order brain circui...
متن کاملRobo4 is a vascular-specific receptor that inhibits endothelial migration.
Guidance and patterning of axons are orchestrated by cell-surface receptors and ligands that provide directional cues. Interactions between the Robo receptor and Slit ligand families of proteins initiate signaling cascades that repel axonal outgrowth. Although the vascular and nervous systems grow as parallel networks, the mechanisms by which the vascular endothelial cells are guided to their a...
متن کاملRegulation of Cortical Dendrite Development by Slit-Robo Interactions
Slit proteins have previously been shown to regulate axon guidance, branching, and neural migration. Here we report that, in addition to acting as a chemorepellant for cortical axons, Slit1 regulates dendritic development. Slit1 is expressed in the developing cortex, and exposure to Slit1 leads to increased dendritic growth and branching. Conversely, inhibition of Slit-Robo interactions by Robo...
متن کاملHuman placental expression of SLIT/ROBO signaling cues: effects of preeclampsia and hypoxia.
Preeclampsia is characterized by dysfunctional endothelium and impaired angiogenesis. Recent studies suggest that the neuronal guidance SLIT/ROBO system regulates tumor angiogenesis. This study investigated if SLIT and ROBO are differentially expressed in healthy term and preeclamptic placentas and if hypoxia regulates SLIT and ROBO expression in placental trophoblast and endothelial cells. Tot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 107 11 شماره
صفحات -
تاریخ انتشار 2010